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Mixing: Dispersion vs. Diffusion

• Diffusion
– Molecular-scale mixing 

precipitation
Flux = -Ddiff(∇C)

• Dispersion
– Macroscopic volume-

averaged concentration
Flux = ΘDdisp(∇C)



Issues and challenges:
• Evolution of the spatial distribution of properties

and processes
• Volume averaging of properties and processes in

systems characterized by mixing zones (at all
scales).  For example:

How should volume-
averaged concentration
be used to predict
reaction rates?

Averaged concentrations
may exist only in mixing
zones, which can be small
and transient.



Issues and challenges:
• Hysteresis

Precipitation path
(advection > diffusion)

Dissolution path
(diffusion > advection)



Precipitation

• Mineral precipitation
• Biomass growth
• Biofilm formation
• Colloid filtration



Impact:

• Fate and transport, sequestration
• Field-scale kinetics vs. laboratory kinetics
• Understanding the evolution of subsurface

properties (MNA)
• Developing amendment introduction

strategies
• Understanding “Rapid” engineered events



Flagship experiment:
• Hypotheses

– Precipitation can be induced in the mixing zone
between solutions containing reactive substrate
(intuitively obvious, but interested in possible
deviation of flow paths)

– Permeability of a mixing zone where mineral
precipitation occurs does not go to zero.  (If it
did, both sides of the mixing zone would be
undersaturated)



Premodeling using Smoothed Particle Hydrodynamics:
Parallel flow with mixing and precipitation



Experimental approach: Parallel flow, mixing and
precipitation at a solution-solution interface, “2-D”

Solution A Solution B
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Tracer test showing fluid-fluid interface
and mixing (second attempt)
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Propagation of calcium carbonate
(second attempt)

And Biofilms…?
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Impact on permeability

After carbonate
precipitation:
Average
permeability
decreased by ~ 100

Before carbonate
precipitation
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Plans:
 Precipitation Kinetics

• Extend outside conventional conditions
• Ion ratios
• Correlation to Sr uptake and speciation

 2-D flow experiments
• Full characterization
• propagation of precipitates in physically

heterogeneous systems
° Low permeability inclusions
° High permeability flow paths

• propagation of precipitates in chemically
heterogeneous systems

° calcite seeds
° clay on sand

 SPH and continuum-scale model refinement



Precipitation Kinetics
(see A.E. Nielsen (1983))

• R = k’(Ω-1)                                                  Adsorption (linear)
• R = k’’(Ω-1)2                                                Spiral growth (parabolic)
• R = [kex Ω7/6(Ω-1)2/3(lnΩ)1/6] exp(-Kex/lnΩ) Surface nucleation

    ~ (Ω-1)5/6 exp(-Kex/lnΩ)
    ~ exp(-Kex/lnΩ)

• R = k’’’(Ω-1)n …Practical

Where:
 ks are rate constants

      Ω = [Π(ai
ν)]/Ksp   (saturation ratio)

 ai
ν is the activity of component i with stoichiometry ν

      Ksp = solubility product

• Also, Ostwald Ripening, Ostwald Step Rule
• Colloid filtration?  Biomass growth?



Precipitation Kinetics

From Shiraki and Brantley (1995, GCA, vol. 59, pp. 1457-1471).

Combined



Precipitation Kinetics and Sr2+

sequestration: Experimental Approach
• Goals:

– Test growth rate functions – apply in models
– Test influence of ion ratios and modifiers
– Morphologies, modes, products – interpretive
– Sr2+ uptake and speciation

• Method - constant composition
– Batch reactors
– Seeding – to confine the role of homogeneous

nucleation
– Stirring -  maintain uniform concentrations and

reduce the influence of diffusive transport to
surface layers.

– Maintain chemical composition (as opposed to
“free drift”) -  to prolong the state of
supersaturation.



• Will these relationships help predict what happens in
the field?
– Subsurface mixing zones are not stirred reactors.

Diffusion will influence precipitation kinetics and,
subsequently, distributions of saturation states.

– Relative rate at which solutes are replenished or
consumed – can result in non-stoichiometric,
varying ion ratios

• R = kf(Ca2+)p(CO3
2-)q – kb      (Zhong and Mucci, 1993,

GCA, vol. 57; Lin and Singer, 2005, GCA, vol. 69)

Precipitation Kinetics: Relevant to Field?



Pre-modeling:
Simulating pore-scale precipitation using
Smoothed Particle Hydrodynamics

• Lagrangian, gridless, particle-based
• Used to establish a basis for parameters and

conceptual basis for continuum approach

• Precipitation of A and B via Cintermediate
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• Continuity:

• Conservation of momentum:

• Diffusion/reaction:
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A  +  B  =  Cintermediate

Cintermediate =  Csolid , driven by (C - Ceq)

Hypothetical intermediate:

Irreversible formation of Cintermediate:

Irreversible formation of Cintermediate:



• Initial Saturation index

• Saturation index during
precipitation

• Steady-state condition at
solution-solution interface
– Preservation of less

stable solid phases
– Co-existence of multiple

phases

• Flow variations
– Velocities and ratios
– Changing map of

Damköhler (reaction rate
vs. advection), and
Peclet (advection vs.
diffusion) numbers
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Continuum-scale simulation: mixing
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Mixing without and with precipitation
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Connections:
• Field Investigations of Microbially Facilitated Calcite

Precipitation for Immobilization of Strontium-90 and
Other Trace Metals in the Subsurface

– University of Idaho; Robert W. Smith, PI

• Hybrid Numerical Methods for Multiscale Simulations of
Subsurface Biogeochemical Processes

– PNNL; Tim Scheibe, PI

• Collaboration opportunities for:
– Microbial characterization methods
– Geotechnical properties



Parallel flow: mixing and precipitation at a solution-
solution interface, 3-D, X-ray tomography

CaCl2 NaHCO3

Inner perimeter
of column

Calcium
carbonate

6 cm
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Propagation of calcium carbonate

50mM Na2CO3 50mM CaCl2

Darcy Flow ~ 1cm/min

60 cm



Application: nested dipole application

+ -

Fluid A Fluid B Fluid AFluid B

Reaction Zone

-+



Example 1: In situ generation and mixing
of reactants and geophysical monitoring

• Application: Formation of calcium carbonate and
co-precipitation (immobilization) of strontium

• Reactions (simplified):

     (NH2)2CO + 3H2O                    HCO3
- + 2NH4

+ + OH-

                 HCO3
- + Ca2+    CaCO3(s)  +  H+

        HCO3
- + Ca2+ + Sr2+   (Ca,Sr)CO3(s)  +  H+

           Ksp calcite = (Ca2+)(CO3
2-) ~ 10-8.4

• An abiotic analog to a microbially mediated
process

urease

urea
CO3

2-

urea

(Ca,Sr)CO3



Questions:

• Impact of flow rate
– Location of pecipitation
– Efficiency of reaction = f(mixing)

• Impact of premeability reduction
– Constant flow
– Constant gradient

urea
CO3

2-

urea

CaCO3



Ultimate Modeling Objective

Prefer a macroscopic continuum scale description
–  Practical
–  Can simulate larger systems

Perform pore-scale modeling to:
–  Validate continuum approach
–  Provide basis for empirical or effective parameters

used in continuum approach

–  Reduce level of detail as much as possible



Continuum model
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Continuity:

• Conservation of momentum:

• Diffusion/reaction:
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A  +  B  =  Csolid
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Supersaturation and velocity profiles

Contours of saturation index



t = 1000 t = 6000t = 3000

P
e 

= 
2.

8
P

e 
= 

0.
9

Impact of Peclet number (advection/diffusion)
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